相似变换的矩阵有什么属性(相似变换矩阵是什么意思)
1. 相似变换矩阵是什么意思
简单地讲就是一个矩阵可以经过初等行列变换后变成另一个矩阵,这两个矩阵是相似的(不是严格定义),其次,按照书本定义,可以按照上面的说法来理解。
在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中,在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用,计算机科学中,三维动画制作也需要用到矩阵,矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算,对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法,关于矩阵相关理论的发展和应用,请参考《矩阵理论》,在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
2. 相似变换矩阵是可逆矩阵吗
其伴随矩阵相似
需要用到多项式连续,A+tI=P-¹(B+tI)P,总有t使得A+tI可逆,因为多项式的根只有有限个.然后求个伴随矩阵再用到连续性可得到结论.
3. 相似变换矩阵是什么意思啊
你说的没错
1.相似变换:不需正交化与单位化
2.正交相似变换:是对实对称矩阵的,需将属于同一特征值的特征向量正交化,然后单位化.
4. 相似矩阵的变换矩阵怎么求
相似矩阵求法:设A,B都是n阶矩阵,若存在可逆矩阵P,使P^(-1)AP=B,则称B是A的相似矩阵,并称矩阵A与B相似,记为A~B。
1.
矩阵指在数学中,按照长方阵列排列的复数或实数集合。
2.
一个矩阵对应着一个线性变换。
3.
相似关系是一种等价关系,即满足自反性、对称性与传递性。
5. 求相似变换矩阵的例题
相似变换是矩阵之间的一种等价关系,也就是说满足:
1、反身性:任意矩阵都与其自身相似。
2、对称性:如果A和B相似,那么B也和A相似。
3、传递性:如果A和B相似,B和C相似,那么A也和C相似。
矩阵间的相似关系与所在的域无关:设K是L的一个子域,A和B是两个系数在K中的矩阵,则A和B在K上相似当且仅当它们在L上相似。这个性质十分有用:在判定两个矩阵是否相似时,可以随意地扩张系数域至一个代数闭域,然后在其上计算若尔当标准形。
如果两个相似矩阵A和B之间的转换矩阵P是一个置换矩阵,那么就称 A和B“置换相似”。 如果两个相似矩阵A和B之间的转换矩阵P是一个酉矩阵,那么就称 A和B“酉相似”。谱定理证明了每个正规矩阵都酉相似于某个对角矩阵。
6. 相似变换矩阵一定是正交矩阵吗
对称矩阵也可以用一般的由特征向量组成的非奇异阵做对角化,只不过它有特殊的性质(对称),因此我们就可以考虑特殊的对角化,也就是正交相似对角化。
这么做有好处:正交矩阵的逆矩阵很容易求,就是它的转置,不像一般的可逆阵需要半天才能求出来。如果是一个1000*1000的矩阵求逆,那要多长时间才能做完?但正交矩阵就太容易了,只要转置一下就行了。
正交矩阵从内积自然引出的,所以对于复数的矩阵这导致了归一要求。正交矩阵不一定是实矩阵。实正交矩阵(即该正交矩阵中所有元都是实数)可以看做是一种特殊的酉矩阵,但也存在一种复正交矩阵,这种复正交矩阵不是酉矩阵。
把一个解析式变成与它恒等的另一个解析式.使用恒等变换往往是在碰到的问题比较繁杂、一时难以下手的时候,通过恒等变换把要解决的问题简化,由未知到已知,最终解决问题.所以,恒等变换的特点就是:将复杂的问题通过表达形式的变形转化成容易解决的简单问题。
它的正交性要求满足三个方程,在考虑第一个方程时,不丢失一般性而设p=cosθ,q=sinθ;因此要么t=−q,u=p要么t=q,u=−p。我们可以解释第一种情况为旋转θ(θ=0是单位矩阵),第二个解释为针对在角θ/2的直线的反射。
旋转反射在45°的反射对换x和y;它是置换矩阵,在每列和每行带有一个单一的1(其他都是0)